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Learning the basic facts is a rite of passage for elementary
children. How fast a child recalls facts can be, rightly or
wrongly, a gatekeeper to more advanced mathematics
classes. There is no question that being fluid with the basic
facts increases the ability to work through more advanced
problems. However, it has also been proven that a child can
be quite sophisticated at problem solving before he or she
has any basic facts committed to memory. The knowledge of
these facts grows through a child’s focused problem-solving
activities beginning with simple combinations and increasing
to include a growing repertory of other combinations
(Carpenter, Fennema, Franke, Levi, & Empson, 1999).

Many teachers become frustrated with students and their
inability to commit these facts to memory. One typical com-
plaint is reliance by some children to count on their fingers to
compute answers. Counting on is an early efficiency children
naturally discovered as they work with numbers. Their fingers
are readily available as manipulatives. Culturally in the United
States, however, finger counting is frowned upon. But how do
we assist children in moving beyond the counting by ones
strategy to something more efficient? In their research on
how children develop mathematical ideas, Carpenter, et. al.
supported evidence that there is a stage of development be-
tween counting on and fact recall. This is the stage of deriving
and flexible choice of strategies.

Why the Persistent Use of Fingers

Developmental learning theory has outlined how students,
when not scaffolded at their instructional level, revert to their
“comfort zone” for their independent level (Vygotsky,
1934/1986). Literacy teachers who use Guided Reading follow
this model in planning instruction for their students. The
same model can be used to understand why students persist
with counting on their fingers. Students develop early the
capacity to count on by ones using their fingers to keep track
of their mental actions. While some curriculum resources
may spend some time on strategy development such as
counting on form the larger, doubles plus or minus one, or
making a ten, this support is typically perfunctory. The gen-
eral expectation is that the student, with the support of their
families, will commit these basic fact combinations to
memory. The outcome of this approach is, if a child doesn’t
remember 8 + 5 yet, he or she will revert to their comfort
zone — counting on by ones — to calculate the answer. Chil-
dren who have not been instructionally supported in deriving
and flexible choice of strategies for a sustained period of time
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will revert to counting on by ones when they can’t recall a
fact combination because it is the only strategy choice that
they have. (See Figure One.)

Liping Ma (1999) notes a difference in approach between
American and Chinese teachers in the development of the
basic facts such as 5 + 7 or 12 — 7. American teachers typically
see “basic arithmetic facts as items to be memorized.” The
Chinese, however, consider such problems as “addition with
composing and subtraction with decomposing within 20" (p.
16). What does this mean? What do the terms composing
and decomposing indicate mathematically? How does deriv-
ing and flexible choice of strategies aid, not only the recall of
facts, but also the development of important higher mathe-
matical ideas?

Looking at the basic facts through the lens of key algebraic
concepts reorients one from the notion that the basic addi-
tion, subtraction, multiplication, and division combinations
are a set of items to be memorized to an opportunity to ex-
plore and develop an important set of interconnected math-
ematical ideas. These mathematical ideas, if learned with
small numbers, can make working with larger numbers easier
and makes explicit key algebraic properties of number opera-
tions. This is the argument for why sustained instructional



support for learning derived strategies around the basic facts
requires a place in classroom instruction.

Arithmetic to Algebra — Big Ideas Behind the Basic Facts

Take a copy of an addition time test and display it visually
for the whole class to see. Ask your students which are the
combinations that they know right away without thinking.
Ask the students why they are so easy. Typically, one of the
first items they will identify is a number plus zero, e.g., 6 + 0.
Without much prompting most first graders will express the
identity property of addition by saying, “any number plus
zero gives you that number.” The same is true for 0 + 6; “Zero
plus a number gets you the number you added.”

The students will also identify a “number plus one”, e.g.,
5 + 1, as easy because it’s “just the next number up.” The
doubles such as 2 + 2 and 5 + 5 also are recalled easily as
known combinations. These basic statements are conjectures
that young children develop as they work with numbers. Tap-
ping into these intuitive conjectures and making them explicit
in the classroom is one important avenue a teacher can take
in developing deep understanding of the mathematics that

lies behind these basic facts (Carpenter, Franke, & Levi, 2003).

The concept of zero is multifaceted. The empty set, e.g., “zero
is nothing,” is only one context of zero. Exploring number
concepts such as this are highly engaging to children. The
same is also true with the identity property in multiplication.

Now ask the students to identify which ones are the hard
ones. Which ones do they find themselves having to do some
counting? For addition, combinations such as 8 + 6 or 9 + 7
are often identified. For multiplication, 6 x 7 or 8 x 6 are
common. The question to then pose to the students, Other
than counting on your fingers, what other strategy can we
use? Is there a way to break the numbers apart so we can use
an easier combination to figure out the harder combination?
These kinds of open but
focused discussions among
the students with the teacher
providing mathematical representations to make the mathe-
matics visible lead to explicit conversations around key
algebraic ideas. It is up to the teacher to nurture these
connections.

It is up to the teacher to
nurture these connections.

The Commutative Property

One of the earliest efficiencies a child discovers when
working with number is that he or she can hold one number
mentally and count on the second set. Eventually the child
discovers that counting on from the larger number is even
more efficient. In the process of doing this, he or she
intuitively discovers the commutative property.

The commutative property (a+b=b+aandaxb=bxa)
opens up other possibilities for students to explore that
reduces the number of facts they need to learn. Having
students explore the range and limits of this algebraic
principle, when it works (addition and multiplication) and
when it does not (subtraction and division), allows the
students to develop key insights into how the four number
operations work individually and in relation to each other.

Again, many students can only take advantage of this princi-
ple if the ideas behind the commutative property are specifi-
cally explored and developed. Some may internally develop
the ideas, but many in the class will leave the principle un-
connected and underdeveloped.

Decomposition of Number

A number is composed of subsets of other units. This is a
foundational idea for operating on any number. If working
with the set of whole numbers, the number 7, for example,
can be broken into the combined valuesof 5+2,4+3,6+1,
among others. The process of breaking numbers into subsets
is known as decomposition of number. Deriving strategies are
built on this concept. To think flexibly about number in this
manner is critical to a student’s mathematical development.
Many children who struggle in mathematics have not devel-
oped this concept. They are limited to seeing and working
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The decomposition of number is the core idea behind all
deriving strategies. Intentionally developing this strategy as a
bridge between counting on by one strategies and recalling
the known fact is essential. One reason children revert to
counting on their fingers when they can’t remember a fact is
because they have not developed the interim strategies in-
volving deriving. Children using derived facts see the basic
facts as in interrelated network of associated combinations
instead of isolated individual factoids. Their long term
memory is an integrated network of ideas that eventually
allows them to recall facts more effectively.

The following first looks at strategies related to addition
and subtraction strategies followed with a look at multiplica-
tion and division.

Addition — Derived Strategies

Doubling, Plus or Minus

Children, very early on, develop a fascination with the con-
cept of doubling. 1+1,2+2,3+3,5+5,10 + 10 are combi-
nations that are easily committed to memory. They are fasci-
nated by the patterns, and more adept students take on the
challenge of learning higher double combinations. Building
off doubles to learn other facts reflects a significant under-
standing about relations among numbers.

Take the basic fact 5 + 6. Those who don’t know the fact
automatically, and cannot break individual numbers into sub-
sets, would need to count by ones to solve the problem
either through direct modeling — counting both numbers in
sequence — or counting on from one of the two numbers. A
child who can decompose numbers uses information about
5+ 5 o0r 6 + 6 to solve the problem. If the child decides to use
5+ 5 it is because they understand that 6 =5 + 1 so therefore
5+6=5+5+1. The decomposing of the 6 into 5 + 1 requires,
at least, an intuitive sense of equality — another algebraic
concept. If the child chooses 6 + 6 as a starting reference, he
or she has to deal with a fact that the relationship with the
original fact is unequal (5 + 6 # 6 + 6). This requires some
thought as to how to adjust the equation to reestablish
equality. Since 6 + 6 is one larger that 5 + 6, the child
subtracts one number to regain a state of equality
(5+6=6+6-1). The relational thinking developed requires
an understanding of how numbers can be decomposed into
useful combinations, re-associated, and kept equal.

Make a Ten

As children explore the base ten system, they come to
realize that ten plus a single digit number combines to make
those two numbers one number, e.g., 10 + 3 = 13. While hard
for many to articulate, the implicit algebraic conjecture that
makes any single digit easy to combine with a group of ten is
"0 + a = a@" The language of the teens makes it difficult for
students to comprehend this place value concept. Many
young children write 71 for seventeen as they hear the “7”
first and the “teen” last. Seeing the teens as tens and ones,
rather than a collection of ones, sets the stage for why recon-
figuring numbers around a ten is a significant efficiency. Get-
ting to a ten makes adding the remaining single digits very

quick and efficient. A basic fact such as 7 + 4 sets the stage for
a child to compose a ten. The problem joins two single-digit
numbers to a ten plus a single-digit number. Decomposing
the seven or the four to then re-associate one of the addends
with the other allows the child to compose the ten, then add
the single digit to the ten to make the final composite num-
ber. Example:
7+4 =7+ (3+1) [decomposition]
=(7+3)+1 [associative property]
=10+1

9+4 =9 +1+3 [decomposition]
=(9+1)+3 [associative property]
=10+3
Viewing this decomposition and re-association process via

the ten frame cards is useful for those students still becoming
secure with this next progression in their thinking. Determin-
ing the total number of dots, without counting them by ones,
engages the eye in a manner that can be directly linked to the
numeric decomposition and associations shown above. Help-
ing students see these connections strengthens the mathe-
matical concepts and scaffolds them off the need to count all
numbers by ones. A crucial aspect of using any representa-
tional tools such as these, is the conversations orchestrated
by the teacher in asking strategic questions of what the stu-
dent sees, how it is seen, and how it is the same of different
from another student’s strategy that the mathematical ideas
become fully formed and numerically represented. Otherwise,
such activities become perfunctory procedures rarely ac-
cessed by the student in their everyday problem solving.

(A) (B)
7+4 9+4
Figure Four

Researchers have identified fluidly knowing the ten facts as
key to working with multidigit numbers. In using that very
quick mental reconstruction, the child decomposed a number,
configured a ten, and used the associative property and con-
cepts of equality.

Eventually one expects a student to know the facts. How-
ever, if a student does not automatically know facts such as
8 +50r 7 +9, he or she can potentially solve the facts fluidly
by decomposing and reconfiguring numbers. The explicit
public conversations around the underlying mathematical
ideas allow the algebraic and relational thinking processes to
emerge. Fluidity with these strategies with smaller combina-
tions makes working with multidigit numbers much easier.



Subtraction — Derived and Flexible Choice Strategies

Get Back to a Ten Strategy

The earliest conception of subtraction for children is “take
away.” Take away is based on the concept of “before,” e.g.,
5 — 1. Without this concept, a child is hampered in solving
problems involving separating a number from another.
Counting back by ones is the initial solution strategy students
use. In order to move beyond counting off by ones, a student
needs to decompose numbers to move backwards in larger
chunks. Consider 13 — 5. If the child does not automatically
know the fact, decomposing the 5 into 3 + 2 enables the quick
removal of the three to get back to the ten. Thus 13 -3 >
10 — 2 = 8 allows the child to move under the ten efficiently.

To execute this strategy, however, two key concepts need
to be understood; that 13 = 10 + 3 and the ten fact of 8 + 2 =
10. Another efficiency is perceiving that, while5=4+1and 5
=3+ 2,3+ 2is selected in order to eliminate the 3 from the
13 to get 10. Having a
child constantly verbalize
this decision-making
process aids in under-
standing the efficiency.

Having a child constantly
verbalize this decision-
making process aids in
understanding the efficiency.

The Difference Between Two Numbers

While “take away” is the most common construct of sub-
traction, it is not the only one. The “difference between” two
numbers is another conceptualization of the operation that in
many instances is more efficient. Consider 13 — 8. Imagine
that you can only solve this with counting back by ones on
your fingers. Starting verbally at 13, and raising a finger be-
ginning with 12, then 11, 10, 9, 8, 7, 6, 5 so that eight fingers
are raised, you determine the answer is five. That solution
follows the structure of 13 — 8 = x. Knowing that subtraction
can also be perceived as the difference between two numbers
restructures the task as 13 — x = 8. Counting back by ones this
way, only five fingers are needed. Given the two numbers of
13 and 8, taking away eight is more tedious, less efficient,
than perceiving the task as the difference between the two
numbers. However, when the numbers are 13 and 5, taking
away five is less work, i.e., more efficient, than counting back
to five. The number relations determine which conceptualiza-
tion of subtraction is the most efficient.

Using the difference between concept often triggers the
inverse operation. Instead of subtracting, the individual trans-
forms the problem into a join, change unknown task and
solves by counting on. For instance, 13 — 8 = x is transformed
into 8 + x = 13. Understanding the inverse relationship of
addition and subtraction simplifies learning subtraction facts.
Adding is easier than subtraction, thus restructuring into
8 + x = 13 is simpler for some. Understanding the inverse
operation, however, requires an abstract flexibility that is
sophisticated, and takes time to develop. Once developed, a
child initially counts on by ones to solve the problem. The
long term efficiency is to add 2 to get to a 10 then add 3 to
getto 13 (8 +2 - 10+ 3 > 13, the answer is 5).

The “difference between” and “inverse operation” strate-
gies arise if problems generating such situations are

presented to the students. The compare, difference unknown
and both the join and separate change unknown problem
types are well suited to foster the inverse relations between
the operations of addition and subtraction. The concept of
the inverse may arise on its own, but more likely if the teach-
er presents problems, games, and discussions that intention-
ally explores these ideas.

Multiplication

Up to now, discussion has been centered on addition and
subtraction, but similar relationships can be explored within
multiplication. What is multiplication and how is it different
than addition? There are multiple conceptions of the opera-
tion but a typical entry point for most students is the equal
grouping construct of multiplication. 3 + 4 is obviously differ-
ent than 3 x 4. More importantly, the 3 in each expression
means something fundamentally different. The ‘3’ in the
addition expression indicates three individual items. The ‘3’ in
the multiplication expression means three equal groups of a
certain number of items within each group.1

Multiplication is formed around the concept of making
units of units to form new composite units that can then be
counted. However, with each repetition of the new
composite unit, a simultaneous increase in the number of
subunits also occurs. Thus multiplication requires the coordi-
nation of units within all sets. Furthermore, in multiplication
the units transform as the product is determined. 3 bags of
bagels with 4 bagels per bag results in 12 bagels. The “bags”
disappear as a unit in the description of the 12 bagels. Part of
learning the basic facts in multiplication requires attention to
the meaning of the operation itself and the units that are
ascribed to the various factors and products. Thus an explora-
tion of the basic facts in multiplication — and subsequently
division —is an exploration of the operation itself.

Students’ initial strategy to multiplication facts is through
the additive approach of repeated addition. This leads to skip
counting which students find

useful. However, as with count-
ing on by ones in addition, the
goal is to move students off
additive and skip counting strat-
egies to more multiplicative
based ones. The mathematical
concept of decomposition of
number is key.

Thus an exploration
of the basic facts in
multiplication — and
subsequently division
—is an exploration in
the operation itself.

The Distributive Property of Multiplication of Addition

If the student does not know 7 x 6 yet, but knows 7 x 5, he
or she can use their understanding of how multiplication
works to connect 7 x 6 to 7 x (5 + 1). This creates an image of

! There are two conventions about which factor is the multiplier (number of
groups or scale factor) and which the multiplicand (number in each group).
The convention of 3 groups of 4, the three is the multiplier and is the conven-
tion most commonly used in America. The phrase “3 times 4,” meaning “I
want 3, 4 times, 4 is the multiplier. This convention is most common in Eu-
rope and Asia. Whichever convention is used, it is important to define in
conversation which convention is being used so that common meanings are
understood. For this article, the multiplier is always first.



divvying up the items within the groups into subsets of 5 and
1. One can then calculate 7 groups of 5 plus 7 groups of 1.
The combination of those partial elements creates the total
product. It is also possible that the multiplier could be broken
up into addends so that a familiar number of sub-groups can
be worked with. In the case of 7 x 8 (7 groups of 8), if one
knows that 7 =5 + 2, then 5 groups of 8 plus another 2 groups
of 8 is another means to determine the total of 7 x 8.

What students begin to do intuitively, and that needs to be
drawn out explicitly by the teacher, is the distributive
property.2 At its core, the distributive property is possible by
decomposing one or both factors into addend components,
multiplying the partials, and then recombining them to find
the total product. Teachers can nurture this understanding by
capturing student intuitive strategies as well as through the
use of open number sentences to explore and confirm these
relationships. Example:

8x6=(4+c)x6
8x6=8x3+8xc
cx6=5x6+3x6

Two overriding messages are conveyed to students as these
decompositions are explored. First, use what you know about
easier problems to figure out the harder problems rather than
skip counting everything. Second, if you do not like the num-
bers as they are, break them apart to make them easier to
work with. These are the core ideas around deriving.

Distributive Property and Place Value

The facts involving a teen allow students to use place value
understanding to solve problems. 9 x 12 is easily solved as
90 + 18 if the child understands that 12 = 10 + 2. Once again,
the distributive property is intuitively used by the child:
9x12=9x(10+2)=(9x10) +(9x2).

Factoring and the Associative Property

Why does 4 x 6 have the same answer as 2 x 12? Is there a
way to break the numbers apart to prove mathematically
why? Posing this questions draws out another decomposition
strategy. Instead of breaking the numbers into addends, 4 or
12 can be factored into 2 x 2 or 2 x 6, respectively. Thus...

4x6=2x12
=2x(2x6) [decomposition]
=(2x2)x6 [associative property]
4x6=4x6 [reflexive property]
While students’ initial attempts at this arise through doubling
and halving, combinations such as 9 x 7 can be factored into
(3 x3) x 7 to form an easier combination of 3 x (3 x 7). In both,
the number is decomposed into factors and then the factors
re-associated to form easier combinations. The algebraic

%It is not the vocabulary phrase, distributive property, that need be the focus
of the conversation, but rather the act of decomposing the numbers into
addends, multiplying the partials and then combining those to find the total
that should be the initial focus of conversation. Attaching the title of that
process as in, the term mathematicians use for this is the distributive proper-
ty, may be appropriate at fourth or fifth grade but not a necessity for second
and third graders as they first engage with the strategy.

associative property can be explored and discussed. The
combination used depends upon the bank of known facts
within a particular student’s repertory.

Division

As with multiplication and addition, helping students com-
prehend the interrelationships between division and subtrac-
tion is important. 12 + 3 can be solved using repeated sub-
traction: 12—-3 2 9-3 > 6-3 2> 3-3 2 0, the answer
is 4 groups of 3. This is using a measurement division concep-
tualization of the operation: how many threes are in twelve
(ax3=12)?

An alternative conceptualization is partitive division: how
many in each set if each set gets the same amount? Or share
12 with 3 equally (3 x a = 12). To some this organization
makes more sense. 12 + 3 using this conceptualization uses
established number sense and known facts to solve the prob-
lem. | know 2 items in each set would use up 6 of the 12 (3 x
2 = 6). That leaves another 6 to pass out so another 2 items
per group for a total of 4.

As students first begin to develop a sense of division, they
need problem solving contexts that allow them to explore
both the measurement and partitive structures. A child can
approach a problem such as 48 + 8 by sorting through a range
of strategies to find the most efficient. With meaningful ex-
plorations, guided conversations to compare strategies, and
practice, a student will move towards more abstract, more
efficient strategies.

Decomposing 48 + 8 into (40+8) +8=40+8 + 8 + 8 isone
way to make the problem easier. A child may not know 48 + 8
but knows 40 + 8 and 8 + 8. Just as easily, a child can decom-
pose the problem into 48 + (2 x 4) = 48 + 2 + 4. Or even
48 + 8 =24 + 4 =12 + 2 if those relationships are understood
and explored as to why each results in the same quotient.
The order of operations becomes an explicit conversation
with student as these strategies are explored, enriching the
mathematical conversations even further.

Knowing the inverse relationship between multiplication
and division is how many students talk themselves through
the basic facts. “What times 8 equals 48?” (c x 8 = 48) is a
frequent phrase as is “8 times what equals 48? (8 x ¢ = 48).
Drawing students’ attention to these relationships will em-
power them to utilize the strategies when an automatic an-
swer fails them. In the process, they broaden the network of
related important mathematical principles with which to
solve problems with accuracy.

Why Bother

To many of us, all of this seems like too many steps. Just
memorizing the fact itself would be much simpler. However,
having children use these strategies actively while building
their fact knowledge will establish a network of associated
ideas in the brain that explores rich and comprehensive
mathematical concepts. These mathematical concepts are, in
fact, essential for working with multidigit numbers and form
the basis for more advanced work in algebra.



Flash Cards & Timed Tests

There is a place for memorization, repeated practice, and
timed tests. The question is when. Research shows that prob-
lem-solving skills, while enhanced by knowledge of the basic
facts, is not dependent upon them. Children can be excellent
problem-solvers and not be fast on a timed test. Knowledge
of facts should not be a gateway to more important mathe-
matical concepts. The problem solving can, in fact, be a moti-
vator to learn the facts with the numbers in context.

Where does one use flash cards or timed tests? When a
child is developing new strategies, problem solving, strategy
discussions, and games are the best tools to use. As a student
becomes more confident with the strategies, particularly with
the decomposition and deriving strategies, flash cards can be
used to “polish off” that set of facts to develop fluency. That
fluency, however, is built upon integrated neurological path-
ways of derived combinations and essential algebraic ideas.

As at the beginning of this article, place a timed test of any
operation on public display. Discuss the “easy” and “hard”
ones. Draw out the strategies, the mathematics. Draw con-
nections among related ideas. Actively interrupt them, if you
think they are receptive, to use more efficient strategies than
the one they are using. This is the process of scaffolding, sup-
porting them at a higher level instead of letting them operate
within their comfort level. In the process, their repertoire of
known facts will grow. Timed test are opportunities to pull
mathematical ideas together and to explore efficiencies as
well as to develop fluency. And remember, the derived strat-
egies used with the basic facts are exactly the same strategies
needed when working with multidigit numbers.

Summary

The Chinese see the facts between 10 and 20 as the first
points where a child needs to grapple with moving above or
below a ten. While exploring this initial point of the base ten
system, powerful mathematical concepts and principles pre-
sent themselves. Yes, we want children to eventually know as
many of the basic facts as fluently as possible. Building a sig-
nificant portion of that fluency upon the concepts of compo-
sition, decomposition, and underlying algebraic principles
empowers students to move onto higher numbers and more
sophisticated number relationships with greater ease and
depth of understanding.
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Try out these ideas in your classroom

For deriving — Number Strings

Write on the board 5 + 5. Most hands will go up immediately.
It pays to start with the very familiar to draw the most students
into the conversation. Then write 5 + 6. Watch the reactions
among your students. Who relates the information between one
problem and the next? Who treats the problem as a new prob-
lem using direct modeling or a counting strategy? Draw stu-
dents’ attention to those who see the problems as interrelated.
Make visual that 5+ 6 =5 + 5 + 1. Write and say next, “If you
know 5 + 5 and 5 + 6, what is 5 + 4?” Such number strings can be
created to help nurture deriving or other strategies. Here are
sample strings in multiplication and division:

Sequence 1 5x5 Sequence2 25+5

6x5 50+5
3x5 30+2
9x5 60+ 2
18x5 60+ 4

NOTE: Extending the last of the sequence into a combination just beyond
the basic facts, allows students to realize what they do with smaller
numbers is exactly the same as with bigger, more complex numbers.

Open Number Sentences
To draw students’ attention to specific mathematical ideas,
open number sentences can be effective tools.
14 + 16 = 15 + ___ What goes on the blank line to make the
number sentence true?
This particular item will draw out the relational effect among
numbers in addition as well as draw out students’ understanding
of equality. Multiplication examples include:
12x9=(12x3)+(12x__)
or
12x__ =(12x3)+(12x6)
An open number sentence such as these helps students explore
decomposition of number and its effect in multiplication.

Decomposition of number in subtraction
Find one of those problems most of your children consider
harder to know, such as:
15
-8

“I know you could count back by ones to solve the problem,
but is there a quicker way to solve it? Can you break the numbers
apart or change the numbers in a way that would make them
easier to work with?” Listen to their responses. Some will break
the 8 into 5 + 3 in order to subtract the 5 to get to 10, and then
subtract the remaining 3. Others will change the problem to
16 — 8 and then adjust accordingly. Either way, the goal is to
encourage students to see relationships, become flexible with
number and develop important mathematical ideas. “Would
that strategy work with... 25 — 8?”

Games

It is well documented that children learn number combina-
tions through games. Take a game as simple as Chutes & Lad-
ders. Take the spinner away and add two dice. A child has to roll
the dice, compute the total, move the playing piece that many
places all the while others are watching and making sure every-
one stays accurate. The games, however, are not enough if chil-
dren do not see the connections between the games and other
mathematical settings. It is up to the teacher to draw the chil-
dren’s attention to those connections. Otherwise, the child’s
brain will not necessarily see the two events as associated ideas.




