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Extending the conversation

This article extends the conversation begun in Children’s
Development of Place Value and Base Ten Understanding:
Building a Multiplicative Rate of Ten. In that piece, the
underlying multiplicative structure of place value and the
unique properties of multiplication as an operation were
explored as a means to understand children’s development of
the rate of ten. There are some key ideas reviewed here that
are pertinent to the extended discussion of this article. They
include:

* The concept of the rate of ten
*  The capacity to unitize and re-unitize a number
*  Decomposition of number in addends and/or factors
* The role of the distributive, commutative and
associative properties in multiplication and division
*  The unique properties of multiplication as an
operation
These mathematical ideas are part of the “knowledge
package” needed to have a “profound understanding” (Ma,
1999) of place value as a rate of ten.

Place value is more than naming the value of the digit
within a particular location. What is also an aspect of place
value is the capacity to comprehend values across places. As
an example, consider the number 783. The following
expressions are all true:

783 x1
700+80+30r700x1+80x1+3x1
78x10+3x1

78.3x 10

7x100+8x10+3x1

7.83x 100

Each of these expressions captures important mathematical
perspectives as one decomposes and re-unitizes the original
guantity. It is the flexibility of reading a number’s value across
places that is equally important as within place. The
combination allows the profound understanding of place
value as a rate of ten to emerge and solidify within a child.
Place value as the coordination of a ratio, as a

multiplicative relation is at the core of this rate of ten concept.

For every new ten gathered, a simultaneous accumulation of
ten ones also occurs.

Unitizing is the cognitive assignment of a unit of measure
to a given quantity. Re-unitizing is the decomposition or
reconfiguring of a quantity in terms of less or more composite
units (Lamon, 1996). This cognitive ability captures this
capacity to look at a number and shift the unit reference

while holding the original quantity simultaneously. That 3.1
million (three and three-tenths million) is equivalent to 31
hundred thousands and 3,100,000 ones is an example of this
cognitive process. This is the mathematical basis for working
with mixed decimals such as 2.4 ones (two and four-tenths
ones). Thinking of that quantity as 24 tenths (2.4 = 24/10)
makes it easier to divide by 4 ones; the result of which would
be 6 tenths, 6/10 or .6 of one.
Multiplication as an operation is uniquely different than
addition. Multiplication is:
* About making units of units which then can be
iterated/repeated
*  About the coordination of units among elements
*  Unit transforming
*  The capacity to scale up and down; seeing
multiplication as n-times as many

The following sections explore how using the rate of ten
and the capacity to re-unitize quantities is reflected in
abstract multidigit multiplication and division strategies. A
focus on these two mathematical ideas allows for a deeper
understanding of how the underlying properties of place
value combines to support a stronger foundation for middle
school mathematical ideas.

Multidigit Multiplication — Multiplication With Decimals: A
Case for the Explicit Use of the Rate of Ten

Researchers have outlined how students who are allowed
to develop their own strategies in multiplication (Ambrose,
Baek, & Carpenter, 2003) progress in the use of strategies.
Early attempts at multiplication emerge out of repeated
addition to forms of doubling and complex doubling. The use
of the distributive property emerges as students’
understanding of the partitioning process into addends grows,
e.g. 42 = 40 + 2. The emergence of the distributive property
at an additive level can be seen in the work of William. To
solve how many eggs are in 10 dozen cartons, William works
on paper writing, “10 x 10 = 100; 10 x 2 = 20 so the answer is
120.” This second grader is coming to understand that
numbers can be broken into combinations of addends, the
parts multiplied, then added to find the total. Students begin
to understand that the number of combinations to be
multiplied increases with the number of partitions.

This section explores how a focus on the relations within
and across the places of a number allows students to gain a
robust understanding of the base ten system. This conceptual
understanding underpins the procedural knowledge
necessary for the computational proficiency required in



multidigit multiplication and division whether working with
multidigit whole numbers or with decimals. A fifth grade
Common Core standard requires that students, Recognize
that in a multi-digit number, a digit in one place represents 10
times as much as it represents in the place to its right and
1/10 of what it represents in the place to its left. (CCSSI, 2010,
5.NBT.1, p. 35). To have a sound understanding of this
standard, the mathematical ideas previously highlighted
converge to form a comprehensive network of related ideas.

Whole Numbers
Consider the following:
26 x 42

To solve the problem using algebraic properties, the
numbers need to be decomposed either into addends, factors,
or a combination of the two. Decomposing numbers into
addends is typical of most students’ early work and is the
mathematical basis for multiplying binomials and the area
model/standard multiplication algorithm.

(20+6) x (40 + 2)

The requisite combinations are formed, multiplied then the
partials are added."
20x40+20x2+6x40+6x2

800+40+240+ 12
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Many mathematical curricula treat the partials 20 x 40 and 6
x 40 from a surface pattern only. Called “front-end
multiplication,” one multiplies 2 x 4 then “add two zeros.”
This may be an observed visual pattern but it does not explain
mathematically why this pattern holds true.

Think, however, as described earlier in the previous article,
how students even as young as third grade are able to
consider how 20 can be represented as 2 x 10 and 40 as 4 x
10. This decomposition process exposes the place value rate
of ten. Thus 20 x 40 is calculated knowing 2 x 4 but 10 x 10
are factors that remain to be considered. Thus 8 x 100 (read
as, what are 8 hundreds?) is explicitly considered rather than
regarded as the superficial machinations of a surface pattern.
Fifth graders considering the Common Core standard of
knowing that the next place larger in a multidigit number is
10 times greater is achieved when place value, and its factors
of ten, is explicitly understood as a rate of ten.

1 While multiplication as an operation is commutative, multiplying the
larger terms first is privileged as it typically arranges the partials from
largest to smallest, albeit not exclusively. This is the order followed when
multiplying two binomials: (2x + a) (4x + b) to get 8x2+ 2xb + 4xa + ab.
The mnemonic term for this order is F.0.L.L. Note that the procedural
order when using the traditional algorithm is L.0.L.F. Other combinations,
O.L.LF, LL.F.O... are all mathematically legitimate as multiplication is
commutative. They are just uncommon

The research perspective on the standard multiplication algorithm
taken by this project focuses on the role of language and ‘making the
mathematics visible’ (Brickwedde, unpublished manuscript 2010) to its
users. Rather than masking the mathematics through the procedural use
of single-digit language, the explicit use of factoring the place value and
the commutative and associative aspects of multiplication as an operation
strengthen both the conceptual and procedural knowledge of the user.

Decimals

A focus on the rate of ten extends into how multiplication
with decimals can be understood. Moving to a place to the
right in a multidigit number still involves the rate of ten.
However, each place is one-tenth the size of the larger place
before it. The earlier example of 2.6 million (mathematically
read as two and six-tenths million), the “two” represents the
number of whole millions. The ‘6" represents six-tenths (6 +
10) of one whole million. Using a simpler example, consider
the following:

4x2.6

Many published math curricula instruct students to ignore
the decimal point, multiply the numbers as if it was a whole
number, then locate the position of the decimal point last.
The number of decimal places to have in the product is
determined by counting the number of decimal places in the
original numbers. But what is the mathematics behind this
surface treatment.

The re-unitizing of a number, described previously, is the
ability to find an equivalent value of a number but from a
different unit perspective. This is a core idea in fraction
equivalencies. Consider the number 2.6, read as two and six-
tenths. The ‘2" is two ones and ‘6’ is sixth-tenths of one.

6
2.6 ones =2 ones + o ones

The standard practice of “ignoring the decimal” masks the
importance of the role of re-unitizing. 2.6 ones does not
equal 26 ones, but it does equal 26 tenths.

2.6 ones = 26 tenths

or
2.6 26
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The ability to re-represent the decimal as a fraction exposes
the underlying mathematical relations, the re-unitized
equivalent values, and the rate of ten. Using the distributive
property to conduct the calculations, the following makes
visible the underlying mathematics.

6
4x2.6=4x(2+.6)=4x(2+5)
=4x2+4xi
10

:8+—
10

4
=8+2+—
10

=10.4 ones

Looked at another way...
4x2.6 =4x26+10o0r
=(4x20+4x6) =10
=(80+24)+10
=104 + 10
=10.4 ones

4xX26




Here is another example, this one involving multiplication
of two decimals.
24x53=2x 2
10 © 10
_24%x53
T 10x10

_20x504+20x3+4x50+4x3
- 10x 10

_ 1000+60+200+12
- 100
1272

~ 100

=12.72

This is the mathematics behind asking students to “ignore the
decimals and pretend they are whole numbers.” By making
the mathematics visible, the factors of ten become explicit,
thus helping students to reason with the numbers rather than
working merely at a procedural level. To do the above with
understanding, the following needs to be understood:
* That 2.4 ones is equivalent to 24 tenths
* The distributive property of multiplication over
addition
*  Order of operations
* To read across place values to know that 1272
hundredths can be re-unitized to be equivalent to 12
and 72 hundredths ones (12.75)

This is all within the range of understanding of fourth and
fifth graders if this type of thinking is explicitly cultivated. It is
especially possible if the underlying algebraic structures of
algorithms are the foundation of student thinking.

Several mathematical ideas merge to form a broader
conceptual field: re-unitizing a number into equivalent values
(hundredths to ones), re-representation of expressions into
equivalent forms (decimals to fractions, fractions to decimals),
decomposition of number into addends or factors, the
distributive property of multiplication over addition, place
value as a rate of ten, and the relationship of what can be
done with whole numbers and how it extends to working
with decimals. This capacity to re-unitize a number into an
equivalent form (2.6 ones = 26 tenths) is directly related to
the issue in long division when students are asked to divide to
one, two, three, or more decimal places.

Division of decimals

The research of Ambrose, Beak & Carpenter (2003) have
shown that children’s initial abstract division strategies evolve
from a building up strategy using multiplication. Dutch
researchers (van Putten, et. al 2005) have looked at students’
“progressive mathematization,” the increasing capacity to
think in efficient quantities and in using scale factor in the use
of the partial quotients strategy. It is this later research that is
most pertinent to the re-unitizing issues being highlighted in
the discussion of decimals in this article.

The partial quotient strategy allows students’ initial
estimates and number sense to be captured as they begin to

solve a division problem at a numerical level. It is based on
talking about the dividend in terms of its value rather than
the traditional algorithm’s digit-based approach. Like the
traditional algorithm, it works towards the elimination of the
dividend by working backwards towards zero. An example of
an early use of partial quotients is as follows:

8)254 |
—80 | 10
174
—80| 10
94
—80| 10
14
-8 1
6| 31R6

The introductory process begins with the largest
combination of “groups of eight” the child knows (a
measurement division structure). As the students’ number
sense matures, and through coaching by the teacher,
questions like, yes you could do 10, but are you close or far
away? Could you double or triple the amount to save yourself
some time? Such prompts scaffold the student’s thinking to
use scale factor to double (20 groups of eight to use up 160
units) or triple (30 groups of eight to use up 240 units) the
original estimate. The increasing efficiency over time allows
students to regard the numerical relations that are visible to
them in the number combinations (8 x 3 x 10 = 24 x 10 = 240).
This “progressive mathematization” measures the increasing
capacity to think in scale.

What if, however, one now wishes to convert the
remainder of six to a decimal? How does one divide 6 by 8?
Many curricula, even those that have received National
Science Foundation (NSF) funding, discuss about “adding a
zero” and pretending that the decimal does not exist for the
moment. There is a real mathematical idea behind this
surface treatment that is worthy of explicit exploration.
Instead of asking students to pretend, what if we ask them to
grapple with the re-unitizing of the numerical values.
Consider the following:

At this point in the procedure, “6,” as in “six ones” is more
useful to be thought of as “60.” The sixty, however, is not “60
ones. Rather it is “60 tenths.” Re-unitizing six into sixty-tenths
allows for easier arithmetic. Seven tenths (.7) times eight
uses up fifty-six tenths (56/10). That quantity happens to be
equivalent to “five and six-tenths” (5.6). It is the toggling back
and forth between the unit conversions, while awkward
initially for students, develops a deep understanding of
equivalencies, unit transformation, and unit coordination; key
aspects of being able to think multiplicatively in working with



ratios and proportions later on in middle school. Thus the
division of the decimals in this example continues as follows:

8) 254.00
=240 |30
14
— 8 1
6.0
—5.6 7 (8 groups of .7 equals 56 tenths or
.40 five and sixth tenths [5.6])
40 .05 (8 groups of five-hundredths equals
0 forty-hundredths)

31.75 The answeris 31.75

The mathematics just described link directly to the
conversation on multiplication with decimals and the power
of re-representing decimals as fractions. Consider the same
problem written differently:

6 +8=2-.3g
10

__ 60+8
T 10

__ (56+4.0)+8
- 10

Division with decimals is another topic where surface
pattern rules have predominated with users not under-
standing the mathematics about why the patterns work.
Consider 8.1 + 3.6. Presented in the “long division” form of
representation, 3.6 )87, students are directed to just “move
the decimal points,” do the division using the whole numbers,
then trust that the answer is correct as no requirement to
bring the decimals back is necessary. Why is that? What
mathematically is happening that allows one to trust that 8.1
+ 3.6 = 81 + 36. Re-representing these two expressions into
fractional form, as all fractions are statements of division,
allows the underlying mathematics to become visible.

8.1+3.6=81+36

81 _ 81
3.6 36

81 10 81
36 X 10 36

The identity property of multiplication or proportional
reasoning governs why this pattern works. Transforming the
original numbers into equivalent relations is not dissimilar to
the act of decomposition and reconfiguring of quantities to
make them easier with which to work.

Re-unitizing a number, equivalent forms of representation,
understanding place value as a rate of ten, and the language
of value combine to form this network of related conceptual
ideas and form the basis of having a profound understanding
of the operation of multiplication and the structure of the
base ten system.

Building Capacity to Use the Rate of Ten

This next section looks at key instructional practices and
tasks that can be used with students to build the capacity to
reason around the rate of ten.

Language

It has been expressed in the initial article on place value
that to understand the underlying mathematics, its
decompositions and units of measure, speaking in value is
imperative. Watching ones language helps the student
cognitively visualize and coordinate the units as
decomposition of the numbers and transformations of units
occur. With 26 x 42, it is a “twenty” (20) and a “forty” (40)
that are multiplied as the first partial rather than a 2 and a 4.
However, knowing that 20 = 2 x 10 and 40 = 4 x 10 allows one
to multiply 2 x 4 to get 8 but one is mathematically left with
10 x 10 making 100, thus 8 x 100 is 800. Using the language of
value allows one to more accurately trace the mathematics.
The factors of ten are explicitly exposed and reasoning
around place value as a rate of ten is in the foreground of
ones work rather than mere memorized surface patterns.

Reading and using the correct mathematical language for
the expression 2.4 million is a harder adjustment for adults.
The mathematically correct way to read that is “two and four-
tenths million” not “two point four.”” There are times when
just merely reading off the digits to someone who needs it
recorded may make sense but the common street habit of
using “point” language may inadvertently inhibit place value
understanding. It is important that students know what .4
million (four tenths of a million) is worth.

In helping to build capacity to verbalize the values of
numbers as well as to build fluency in working around
landmarks of ten, a mathematical warm-up task used with
whole numbers can be implemented using decimals. Example,
in as few “jumps” as possible,

You are at 36, how much to get to 100?
36 "> 40 ***> 100, the answer is 64.
You are at 256, how much to get to 1000?
256 "> 956 "> 1000, the answer is 744.
You are at 7.14, how much to get to 8?
7.14 %> 7.20 **°> 8, the answer is .86
You are at 50, go back .18
49.82¢ % 49.90¢ %50
You are at 70, go back 2.14.

67.86 <68 €270

* There is a mathematically correct context for the “point” language. 5.2 can
be the numerical code for a sorted list as in “unit five, lesson 2.” In standards-
based documents 5.2.1 could stand for grade five, standard two, benchmark
one.” A “point 4 million” does not convey the same mathematical
relationship as “four-tenths of a million.”



Doing this task with decimals emphasizes the language of
values. Adding “six-hundredths” to get to “seven and twenty-
hundredths,” then eighty-hundredths” or “eight-tenths” to

get to “eight” carries more meaning than adding “point oh six”

to get “seven point two.” This is more than a pedantic issue
of language snobbery. Expecting students to talk in values
elevates the mathematical understanding within the learning
environment. “Four-tenths of a million” carries more
meaning than “point four million.” The place value and the
rate of ten is more explicit.3

Re-unitizing Number & Following the Units

What is four-tenths of a million? If we return to the
example of 2.4 million (two and four-tenths million), we know
that the “two” represents two groups of one million. The
“four tenths” of the million is equivalent to four hundred
thousand or 400,000.

In mathematics the unit of “ones” is not reflected typically
when numbers are verbally described. Nevertheless, there
are indeed 400,000 ones in four hundred thousand. Asking
students to consider the ones as a unit of measure becomes
useful in helping students to decompose and reconfigure
numbers into equivalent forms. Consider the following series:

1.23 thousands <> ones

.02 millions €-> tens

______tens €= 2,652 hundreds
Which is greater or are they equal? (<, >, =)

.02 tens 2 ones

.35 million 45 hundred thousand

Developing the Distributive Property

The distributive property is the basis of the multiplication
algorithms most frequently used. An underlying conceptual

skill is the decomposition of number into equivalent sub-units.

Thus 26 x 42 is typically decomposed into 20 + 6 x 40 + 2. The
same conceptual idea can be extended to multiplying
decimals as in 2.6 x 4.2. These numbers can also be
decomposed into 2 + .6 x 4 + .2, followed by the
multiplication of the four partial products.

Using true/false and open-ended number sentences
(Carpenter, Franke, & Levi, 2003), instructional tasks can be
developed that help students reason around the distributive
property. Consider the following tasks:

1.2x.6=1x6+2x6 T/F?
4x1.2=4x1+4x.2 T/F?

42x1.2=4x1+.2x.2 T/F?

3 [t is also legitimate to help students recognize that the public (news
anchors, adults in their world) will read mathematical values such as 3.2
million as “three point two million.” The standard language in math and
science classrooms needs to be of value to develop and enhance the
number sense and concepts of measure.

2x1.2=2x1+___x.2
3.1x44=3x44+.1x
Reasoning With the Rate of Ten

Knowing that 10 x 10 (ten tens) are 100 is useful, as is
knowing 10 x 100 (ten hundreds or one thousand). But what
of the following?

What is...
.10of10 (one-tenth of ten)
.1 of 100 (one-tenth of one hundred)
dof.1 (one-tenth of one-tenth)
.10of.01 (one-tenth of one-hundredth)

Other ways of reasoning around the rate of ten is to
become comfortable factoring the tens underlying the place
value of the numbers involved.

5x26

5x2.6=5x26x.1or

This act of factoring elevates the use of the associative
property of multiplication.

2x.02=2x2x.1x.1 T/F?
42x.6=(4x6+2x6)x___x.1
4.05x3=405x3x___

Another type of instructional task to help reason around
the rate of ten is to focus on the relational thinking when
comparing a known quantity with a similar quantity.

Itis true that 174 + 8 = 21.75. Use estimation and
number sense to determine where to place the
decimal point in each problem below. Explain why
you placed the decimal point where you did.

174+8=2175
1740+8=2175
1740+80=2175

Using Multistep Multiplication and Measurement
Division Problems

The work of Empson & Levi (2011) and Carpenter,
Femmema, Franke, Levi & Empson (1999) explore the role
how multiplication and measurement division can be used to
support the development of place value and base ten
understanding. The following are examples with whole
numbers.

There are 7 boxes of markers on the store rack. Each box has 10

markers in it. How many individual markers are in all of the

boxes?

The art teacher has 243 markers in baskets for students to use
for a project. She asks a student to place the markers back into
boxes. If 10 markers fill up at box, how many full boxes can the
student fill?



Each of these tasks, with the use of ten as the organizing
guantity, guides the student to consider the multiplicative
relation of the base ten system. 70 equals 7 x 10. 243 has 24
whole groups of ten within the number. The same two
problem types can be selected to have students explore the
base ten relations through the use of decimals.

It takes .5 of a yard of fabric to make a pillow. How much fabric
is needed to make 12 pillows?

To make a batch of chocolate chip cookies, the recipe calls for .1
of a tablespoon of baking powder. How many batches of
cookies can be made if there are 4 tablespoons left?

It takes a .1 of meter of Velcro to use as on a child’s shoe at the
factory. If a machine only has 5.2 meters of Velcro left on the
spool, how many more shoes can be finished before the supply
of Velcro runs out?

The context of the different scenarios allows students to
visualize what is happening allowing them to construct
meaningful strategies to solve for the unknown information.
The public sharing that would accompany the strategies
allows students to compare, contrast, and contemplate
efficiencies. The capacity to reason with the relationships
strengthens over time.

Summary

Language, decomposition of number, derived and
relational thinking, equality, unit coordination and re-
unitizing, and keeping the mathematics visible are all
elements interwoven to create a conceptual field needed to
comprehend and work with a multiplicative rate of ten. This is
the core of the base ten system. It is the foundation upon
which rational number and proportionality are built in middle
school mathematics classrooms. It is a house of bricks rather
than of straw or sticks. Building fluency and understanding
takes time and consistent and persistent conversations over
several grades. The outcomes, however, are highly beneficial
for developing future mathematical concepts.
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