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Observing Children’s Thinking

Angelina was playing with her stuffed animals on the floor
of her bedroom. When it was time to clean up, she put three
of the stuffed animals on the bed. How many more does she
need to put up on her bed to have all seven of her stuffed an-
imals off the floor?

Angelina, a beginning first grader, takes three cubes and
places them on the table in front of her. She then starts
counting as she puts more cubes in front of her saying, “four,
five, six, seven.” In the counting, she keeps the new cubes
just a little apart from the others. She answers four more
stuffed animals need to be picked up.

Ari does something similar but announces his answer to be
seven. You had observed him count out three cubes then
count on to seven but there is only a single pile of cubes in
front of him. What, besides the separate answers, is different
between these two children? How are you as the teacher to
use this information?

Consider the following exchange between the two stu-
dents and the teacher.

T: Ari, | noticed you used the cubes. Tell me how you solved the
problem.

Ari: | counted three stuffed animals and then | counted four, five,
six, seven. The answer is seven.

T: Angelina, tell me what you did with your cubes.

Angelina: | put out three cubes then went four, five, six, seven. | am
pretending these are the stuffed animals | put up second so my an-
swer is four more stuffed animals?

T:  Angelina, so what are you pretending this first group of cubes
are?

Angelina: These are the stuffed animals that | put up first.

T:  And what are you pretending these cubes are? (Pointing to the
second group.)

Angelina: These are the stuffed animals that | put up second.

T: | noticed you kept those cubes separate from the first group.
How did that help you solve the problem?

Angelina: Because if | didn’t keep them separate | wouldn’t know
what my answer was.

T:  Ari, what did Angelina do with her cubes that is different from
the way you used yours?

Depending upon Ari’'s response, you can determine
whether Ari’s issue is one of developmental understanding or
one of organizational confusion. You also observed watching
your students that Jerry worked with his fingers. All you
heard him say to himself was, “four, five, six, seven; (extend-
ing one finger with each count) the answer is four.” A public

conversation with Jerry reveals that he just pictured the first
group of stuffed animals in his head. He didn’t need to count
them out since they were already on the bed.

Depending upon your own upbringing, and depending up-
on your familiarity with how children solve an instructional
task like this, you might be scratching your head wondering
why no child took out seven cubes and removed three of
them to find the answer. That was how you were taught as a
child to do this type of scenario.

The following sections focus attention on these big ideas:
1. The differences in structure among problem types
2. Developmental responses to the different problem
types
3. Developmental progressions in children’s solution
strategies in solving the problem types

Children’s Response to the Structure of Problem Situations

Researchers began in the early 1980s to look closely at how
young children approached various problem structures (Car-
penter & Moser, 1984). In that work, several important in-
structional implications were identified:
1. There is a developmental progression in terms of ease
of solving problems among the different problem types.
2. There is a developmental progression in terms of in-
creasing abstraction in the types of solution strategies
that children use to solve the various problem types.
3. Action in the context of the problem makes some
problem types easier than others.
As the research expanded, these patterns held across all four
operations of addition, subtraction, multiplication, and divi-
sion. Another important aspect of this early research was that
children as young as kindergarten can solve a wide range of
these problem types because they can be modeled in ways
that are natural to them and tap into their informal
knowledge (Carpenter, et al., 1993). For teachers, the ques-
tion arises of how can we draw out this informal knowledge
of young children and use that knowledge as a conduit for
children to develop important mathematical ideas.

Problem Types

To begin to sort through the differences among the prob-
lem types, think about two things: the action or non-action of
the context, and what is unknown (for addition and subtrac-
tion) in the situation or what is known (for multiplication and
division). The labels used to describe the addition and sub-



traction problem types come from the action/non-action im-
plied in the context. First let us examine the difference be-
tween active and non-active scenarios.

Action vs. Non-Action in Context

Imagine you are videotaping a scene. Robbie has picked 6
strawberries and placed them into his basket. Then he picks 7
more strawberries. In the storyboard for this video clip, the
viewer sees 6 strawberries already in the basket. Then the
main character, Robbie, adds more to the basket. The basket
fills with more strawberries. There is change over time.

Now imagine videotaping another scene. Robbie has two
baskets of fruit. There are 6 strawberries in one basket and 7
apples in another. At the beginning of the video, the baskets
have 6 strawberries and 7 apples. At the end of the movie,
the baskets still have 6 strawberries and 7 apples. Nothing
changed over the course of the video.

Mathematically, | can ask questions to further each of the-
se scenes. In the former | could ask, “How many strawberries
did Robbie end up picking?” For the latter | could ask, “How
many pieces of fruit does Robbie have altogether?” The
mathematical structure for both of these situations would
look the same: 6 + 7 = y. What the researchers found, howev-
er, is that the first scenario is easier for young children to
solve than the second. The act of joining tol, or its counter-
part separating from, makes more initial developmental
sense than part-part-whole, discrete scenarios. The action of
picking, giving, taking, losing, getting are easier to visualize,
access, and role play for young children and even for English
language learners. The “doing,” the change over time implied
in the context, makes these scenarios more accessible to
children.

The Unknown

Mathematically | can change where the unknown is locat-
ed in a problem. It changes the question that is asked of the
problem solver. Consider the equation 6 + 7 = 13. In the two
scenes described above, the mathematical structure was 6 +
7 = y. The result is unknown (active) or the total is unknown
(non-active). But what if the information sought is different?
Robbie has 6 strawberries. How many must he pick to have
13? The mathematical structure for this problem is 6 + y = 13.
The change is unknown (active).

The third place where the unknown can occur is when the
start is unknown (active). In this scenario, Robbie had some
strawberries in his basket. He picked 7 more. Now he has 13.
How many did he have to start with? The mathematical struc-
ture for thisisy + 7 = 13.

Recap

Active contexts are more accessible for early learners than
non-active. Children’s modeled solution strategies look dif-
ferent as well. To categorize the problem situations into ac-
tive and non-active, the following holds:

Active Non-Active
Joining Part-Part-Whole
Separating Comparing

Unknown Descriptors

Whole unknown
Part unknown
Difference unknown

Result unknown
Change unknown
Start unknown

Developmental Implications

Where the unknown is located influences the developmen-
tal difficulty of the task for a child. The easiest problems to
solve developmentally are where the result or the whole is
unknown, whether or not the context is a joining, separating,
or part-part-whole. This is because no planning is required of
the child. They work in order with the first step, do the next
step, and find the total.

Returning to Angelina and Ari and their work described at
the beginning, to be successful with the change unknown
problem, Angelina had to plan ahead and set apart the new
cubes from the original set of cubes she had put out in order
to know which group would be her answer. Ari, who had an
idea of what was being asked in the task, did not plan ahead
and so was not able to “see” his answer. All he saw was the
combined set and so answered “7.”

Three developmental clusters form among the various
problem types. The first in the list is the “gate keeper.” If a
child can’t do the first problem it is less likely that they can do
the others. Generally speaking, addition is easier than sub-
traction, active is easier than non-active problem types.

Easiest
Join, Result Unknown
Separate, Result Unknown
Part-Part-Whole, Whole Unknown
Multiplication*

Middle Level
Join, change unknown
Separate, change unknown
Multiplication*
Compare, Difference Unknown
Measurement Division
Partitive Division

Hardest Level
Join, Start Unknown
Separate, Start Unknown
Part-Part-Whole, Part Unknown

* Some evidence suggests that for some children multiplication comes earlier
than the change unknown problems. Therefore it is considered a cusp prob-
lem.

Children’s Solution Strategies

The original research around children’s response to the
problem types identified a progression in the solution strate-
gies children use. The two clusters noted above that are the
easiest and middle developmental levels are accessible to
children because they can all be directly modeled. This key
term is essential to understand.

Direct Modelers are locked into following the structure of
the problem. Modeling includes concrete representations of
all sets involved (manipulative or pictorial). Typical of early
direct modelers is, if interrupted, they need to go back to the
beginning and restart the process. An example of a direct
modeler was Angelina in the opening vignette. She repre-
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sented in cubes a starting set of 3, then using blocks counted
on to seven. If she does not instantly recognizes the new set
she would have to recount that second set to determine that
there were 4, thus giving her the answer.

Jerry is a counter. His strategy was to hold the first set in
his head and then count on using fingers to keep track of the
set. This represents the next level of abstraction children
demonstrate. Still following the structure of the context, he
counted on to seven to find his total. The first set of three
was mentally abstracted.

If you saw a child, even if they used cubes, take out seven
and remove three, then count the remainder, that child is a
flexible thinker. This child has temporally restructured the
problem from being 3 + y =7 to 7 — 3 = y. Using the video
storyboard analogy once again, this child runs the tape in
reverse. This is very abstract for children to comprehend and
reflects the emergence of key algebraic ideas.

The most abstract developmental level is derived & num-
ber facts. The hallmark of derived facts is the emergence of
relational thinking, another key aspect of algebraic thinking.
With 3 + 4, the child may know that3+3 =6s03+4=7.The
child uses what is known about a familiar combination to re-
lationally calculate the unknown. The properties of opera-
tions, specifically the associative property, is utilized Intuitive-
ly.[3+4=3+(3+1)=(3+3)+1=6+ 1] Finally, a child
knows the answer is 4 because 3 + 4 = 7 is a known combina-
tion. At the number level, the child’s computational thinking
is done mentally with only those items visible that the child
needs to free up working memory to complete the execution
of the equation.

While there is a progression of direct modeling, counting,
flexible thinking, and derived & number fact levels, it is not
necessarily a linear one. Number size can effect which level
solution strategy one uses. A child can be a fluid counter with
small numbers but may need to direct model multidigit num-
bers. A child may have automaticity with 6 + 6 but has to
count on for 6 + 8. The progressions are more fluid and over-
lapping. Over time the goal is to be more abstract in ones
thinking applying the properties of operations and thinking
relationally. An important message for students to learn,
however, is that the modeling processes are powerful math-
ematical tools that should be readily used and not to be
looked down upon.

Child’s Logic vs. Adult Logic — Being a Flexible Thinker

All of us learned certain solution strategies to particular
problem structures growing up. We have already looked at
Angelina’s solution to the join, change unknown structure.
We were taught to subtract with this scenario. But children
don’t see “you have three, how much to get to 7?” as a sub-
traction structure. This is an addition context for children. Yes,
subtraction is a viable strategy to Angelina’s task, but it is not
necessary, nor necessarily more advantageous to do so.

Another type that needs a close look is compare, differ-
ence unknown. “You have 7 balloons, | have 12. How many
more do | have than you?” As a child, there is a high likelihood

that you were told to subtract to solve this problem. But look
at how children perceive this problem.

A direct modeler uses a matching strategy to solve this.
The child lines up a row of 7 cubes and a row of 12 cubes,
then matches the cubes one-to-one. The answer is the un-
matched cubes. When you observe what the child is doing, he
or she is neither adding nor subtracting. To solve this problem
any other way, a child must be a flexible thinker.

There are three choices that can be made here, all mathe-
matically legitimate. One can restructure the problem into a
join, change unknown and count up (7 + y = 12). One can re-
structure the problem into a separate, change unknown and
count back to 7 (12 — y = 7). Finally, one can do what we were
told to do growing up and “take away” 7 from 12 (12 -7 =y).
Number choices may drive the decision to choose one strate-
gy over another. With the numbers 7 and 12, it is less work if
you are a counter, meaning more efficient, to either add up
to 12 or count back to 7. The child doing either strategy
would use only five fingers. Two more fingers have to be used
with these numbers to take away seven.

The efficiency of strategy changes, however, if the num-
bers were 5 and 12. Now 12 — 5 uses fewer fingers than 12 —y
= 5. Being flexible and efficient in ones thinking is not just
being able to restructure a problem. It is being able to choose
among legitimate strategies to select the best option.

The Kindergarten Study — Children’s Informal Knowledge

In a published study (Carpenter, et al., 1993), researchers
reported high percentages of kindergarteners could solve all
the problems discussed here. These were young children who
had been presented problems all year long. They were not
“taught,” meaning explicitly shown, how to solve a problem
in any particular manner. The kindergarteners used strategies
that made sense to them and openly discussed those strate-
gies with classmates. Some kindergartens still had some one-
to-one counting errors but the strategies on how to solve the
problems were clearly present. By the spring of the year,
87.1% could use a correct strategy to solve a multiplication
problem; 80% the change unknown type problem. 72.9% of
the students solved the compare problem, with 74.3% solving
a measurement division problem. The reason for this success
is that all of these problems are accessible to kindergarteners
through the direct modeling process and they solved the
problems using logic that made sense to them.

Summary of Problem Types With Solution Strategies

e Join, Result Unknown (Add To, Result Unknown): (5 + 7 = y) Ann
has five pennies. She gets 7 more pennies from her dad. How many
pennies does she have now? Direct Modeler: Makes a pile of 5 cubes
and 7 cubes, joins them all and counts all starting from one. Coun-
ter: Says five, then keeping track on her fingers counts, 6, 7, 8, 9, 10,
11, 12. Counts fingers to find answer. Counts from the larger: Counts
on from 7 to save time. Relational Thinker (Derived Strategy): 5 + 5
=10,10+2=12.

* Separate, Result Unknown (Take From, Result Unknown): (12 -7
=y) Ann has 12 pennies in her hand. She puts 7 pennies in her pocket.
How many pennies does she still have in her hand? Direct Modeler:
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Pile of 12 cubes, separates 7, counts remaining cubes. Counter:
Counts back from 12 until seven fingers are up. Answer is 5. Flexible
Thinker: Restructures into a join, change unknown problem. Counts
up from 7 to 12. Relational Thinker: 12 -2 =10, 10-5=5.

e Join, Change Unknown (Add To, Change Unknown): (5 + y = 12)
Abdu has 5 pennies. How many more does he need to have 12 pen-
nies? Direct Modeler: A pile of 5 cubes, counts on to 12 keeping new
set of cubes separate from the original. Counts the new cubes to
find answer. Counter: Counts on from 5 extending a finger with each
count. Number of fingers is the answer. Flexible Thinker: 12 -5 = 7.
Relational Thinker: 5+5=10,10+2=12,5+2=7.

« Separate, Change Unknown (Take From, Change Unknown): (12 —
y = 7) Abdu has 12 pennies. He gives some of the pennies to his
cousin. Now he has 7 pennies. How many pennies did he give his
cousin? Direct Modeler: Makes pile of 12 cubes. Removes cubes
until five are left. Counts cubes that were removed. Counter: Starts
at 12, counts back stopping at 7. Counts number of fingers used.
Flexible Thinker: Restructure into a join, change unknown and count
up, or into a separate, result unknown and subtract 7 from 12. Rela-
tional Thinker: 12-2=10,10-3=7,2+3=5.

e Compare, Difference Unknown - (no number sentence specifically
reflects this problem structure) Lilly has 7 pennies. Emil has 12 pen-
nies. How many more does Emil have than Lilly? Direct Modeler: A
train of 7 cubes matched one-to-one with a train of 12 cubes. Counts
the unmatched cubes. Counter: There is no counting strategy to
match this problem type. Flexible Thinker: Restructure the task into
7+y=12,12-y=7,0r 12 -7 =y. Uses counting, relational, or fact
recall to solve. Relational Thinker: 7+3 > 10+2 > 12,0r12-2 >
10-3>7,0r12-2->10-5-> 5.

e Join, Start Unknown (Add To, Start Unknown): (y + 5 = 12) Arthur
has pennies in his pocket. He puts 5 more in his pocket. Now he has
12. Now many pennies were in his pocket to start with? Direct Mod-
eler: Trial & error. Counter: There are no counting strategies for this
problem situation. Flexible Thinker: Restructure the problem into 5
+y=12,12-5=y, or 12 — y = 5. Use modeling (not direct model-
ing)z, counting, or relational thinking to solve. Relational Thinker:
See previous examples that match the structure.

* Separate, Start Unknown (Take From, Start Unknown): (y — 5 = 7)
Arthur had some pennies. He lost 5 of them. Now he has 7 left. How
many did he have to start with? Direct Modeler: Trial & error. Coun-
ter: There are no counting strategies for this problem type. Flexible
Thinker: Restructure the problem into 5+ 7=y or7 -5 =y. Uses
modeling (not direct modeling), counting, relational strategies to
solve the problem. Relational Thinker: See previous examples that
match the structure.

e Multiplication: (3 x 5 = y) Juquila has three piles of pennies with 5
pennies in each pile. How many pennies does she have altogether?
Direct Modeler: Puts cubes into 3 piles with five in each pile. Counts
all of the cubes starting from one. Counter: Skip counts by fives to
fifteen. Relational Thinker: 2 x 5 = 10 so add five more.

e Measurement Division: (15 + 3 = p) Luke has 15 pennies. He wants
to give three pennies to his friends. To how many friends can Luke
give three pennies? Direct Modeler: Create a pile of 15 cubes. Start
passing out 3 into groups until there are no more cubes left. Count
the piles. Counter: Skip count by three to fifteen. Flexible & Rela-
tional Thinkers: p x 3 = 15.

e Partitive Division — (15 + 5 = p) Liz has 15 pennies that she wants
to give to 5 friends. If she gives the same number of pennies to each

friend, how many pennies will each friend get? Direct Modeler:
Makes a pile of 15. Starts passing out one cube to each of five piles.
Continues to pass out the cubes one by one until all cubes are gone.
Count the number of cubes in each pile. Counter: Trial & Error. Flex-
ible & Relational Thinkers: 5 x p = 15.

Compare, Quantity Unknown (Compare, Bigger/Smaller) Tom has
17 pennies. Eliz has 3 less than Tom. How many pennies does Eliz
have? Or, Tom has 17 pennies. Eliz has 3 more than Tom, How many
pennies does Eliz have? Direct Modeler: There is no direct modeling
construct for this problem type. Counter: There is no counting con-
struct for this problem type. Flexible Thinker: One must be a flexible
thinker to solver this problem type. For the first scenario, the prob-
lem could be restructured into 17 — 3, for the second scenario 17 + 3.
If the combinations were Tom had 17, that’s 12 more than Eliz, the
problem would more likely be transformed into 17 —y=120or 12 +y
=17.

Compare, Referent Unknown (Compare, Bigger/Smaller) Tom has
17 pennies, that’s 3 more than Eliz. How many pennies does Eliz
have? Or, Tom has 17 pennies. That’s 3 fewer than Eliz. How many
does Eliz have? Direct Modeler: There is no direct modeling con-
struct for this problem type. Counter: There is no counting construct
for this problem type. Flexible Thinker: One must be a flexible
thinker to solver this problem type. For the first scenario, Tom has 3
more than Eliz, he problem can be transformed into 17 — 3 = y (given
these numbers most likely) or 17 — y = 3. For Tom has 3 fewer than
Eliz, 17 + 3 = y is likely. Number combinations could also elicit other
restructured strategies as noted with the quantity unknown task.

Nuances and variations might occur with each of the problems listed.
Generally, however, most fit within the patterns noted. If you ob-
serve something different, make notes and talk over what was wit-
nessed with a colleague. Ask questions. Is the structure of the prob-
lem being followed? What is the child pretending a particular cube
represents?

Try some of these problems with your students. Put you own stu-
dent names in, adjust the numbers, observe and ask questions.
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